113 research outputs found

    Atoms and Quantum Dots With a Large Number of Electrons: the Ground State Energy

    Full text link
    We compute the ground state energy of atoms and quantum dots with a large number N of electrons. Both systems are described by a non-relativistic Hamiltonian of electrons in a d-dimensional space. The electrons interact via the Coulomb potential. In the case of atoms (d=3), the electrons are attracted by the nucleus, via the Coulomb potential. In the case of quantum dots (d=2), the electrons are confined by an external potential, whose shape can be varied. We show that the dominant terms of the ground state energy are those given by a semiclassical Hartree-exchange energy, whose N to infinity limit corresponds to Thomas-Fermi theory. This semiclassical Hartree-exchange theory creates oscillations in the ground state energy as a function of N. These oscillations reflect the dynamics of a classical particle moving in the presence of the Thomas-Fermi potential. The dynamics is regular for atoms and some dots, but in general in the case of dots, the motion contains a chaotic component. We compute the correlation effects. They appear at the order N ln N for atoms, in agreement with available data. For dots, they appear at the order N.Comment: 30 pages, 1 figur

    Genetic insights into resting heart rate and its role in cardiovascular disease

    Get PDF
    Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.</p

    Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus

    Get PDF
    : Identifying genetic determinants of reproductive success may highlight mechanisms underlying fertility and identify alleles under present-day selection. Using data in 785,604 individuals of European ancestry, we identified 43 genomic loci associated with either number of children ever born (NEB) or childlessness. These loci span diverse aspects of reproductive biology, including puberty timing, age at first birth, sex hormone regulation, endometriosis and age at menopause. Missense variants in ARHGAP27 were associated with higher NEB but shorter reproductive lifespan, suggesting a trade-off at this locus between reproductive ageing and intensity. Other genes implicated by coding variants include PIK3IP1, ZFP82 and LRP4, and our results suggest a new role for the melanocortin 1 receptor (MC1R) in reproductive biology. As NEB is one component of evolutionary fitness, our identified associations indicate loci under present-day natural selection. Integration with data from historical selection scans highlighted an allele in the FADS1/2 gene locus that has been under selection for thousands of years and remains so today. Collectively, our findings demonstrate that a broad range of biological mechanisms contribute to reproductive success

    Genome-wide Meta-analysis Unravels Novel Interactions between Magnesium Homeostasis and Metabolic Phenotypes

    Get PDF
    Magnesium (Mg &lt;sup&gt;2+&lt;/sup&gt; ) homeostasis is critical for metabolism. However, the genetic determinants of the renal handling of Mg &lt;sup&gt;2+&lt;/sup&gt; , which is crucial for Mg &lt;sup&gt;2+&lt;/sup&gt; homeostasis, and the potential influence on metabolic traits in the general population are unknown. We obtained plasma and urine parameters from 9099 individuals from seven cohorts, and conducted a genome-wide meta-analysis of Mg &lt;sup&gt;2+&lt;/sup&gt; homeostasis. We identified two loci associated with urinary magnesium (uMg), rs3824347 (P=4.4×10 &lt;sup&gt;-13&lt;/sup&gt; ) near TRPM6, which encodes an epithelial Mg &lt;sup&gt;2+&lt;/sup&gt; channel, and rs35929 (P=2.1×10 &lt;sup&gt;-11&lt;/sup&gt; ), a variant of ARL15, which encodes a GTP-binding protein. Together, these loci account for 2.3% of the variation in 24-hour uMg excretion. In human kidney cells, ARL15 regulated TRPM6-mediated currents. In zebrafish, dietary Mg &lt;sup&gt;2+&lt;/sup&gt; regulated the expression of the highly conserved ARL15 ortholog arl15b, and arl15b knockdown resulted in renal Mg &lt;sup&gt;2+&lt;/sup&gt; wasting and metabolic disturbances. Finally, ARL15 rs35929 modified the association of uMg with fasting insulin and fat mass in a general population. In conclusion, this combined observational and experimental approach uncovered a gene-environment interaction linking Mg &lt;sup&gt;2+&lt;/sup&gt; deficiency to insulin resistance and obesity

    Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses

    Get PDF
    Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n = 161,460), and neuroticism (n = 170,911). We identify 3 variants associated with subjective well-being, 2 variants associated with depressive symptoms, and 11 variants associated with neuroticism, including 2 inversion polymorphisms. The two loci associated with depressive symptoms replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (P = 0.8) strengthen the overall credibility of the findings and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal or pancreas tissues are strongly enriched for association

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) is influenced by both foetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease1. These lifecourse associations have often been attributed to the impact of an adverse early life environment. We performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where foetal genotype was associated with BW (P <5x10-8). Overall, ˜15% of variance in BW could be captured by assays of foetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (rg-0.22, P =5.5x10-13), T2D (rg-0.27, P =1.1x10-6) and coronary artery disease (rg-0.30, P =6.5x10-9) and, in large cohort data sets, demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P =1.9x10-4). We have demonstrated that lifecourse associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and have highlighted some of the pathways through which these causal genetic effects are mediated

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW (P\textit{P}  < 5 × 108^{-8}). Overall, approximately 15% of variance in BW was captured by assays of fetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (R\textit{R}g_{g} = -0.22, P\textit{P}  = 5.5 × 1013^{-13}), T2D (R\textit{R}g_{g} = -0.27, P\textit{P}  = 1.1 × 106^{-6}) and coronary artery disease (R\textit{R}g_{g} = -0.30, P\textit{P}  = 6.5 × 109^{-9}). In addition, using large -cohort datasets, we demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P\textit{P} = 1.9 × 104^{-4}). We demonstrate that life-course associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and identify some of the pathways through which these causal genetic effects are mediated.For a full list of the funders pelase visit the publisher's website and look at the supplemetary material provided. Some of the funders are: British Heart Foundation, Cancer Research UK, Medical Research Council, National Institutes of Health, Royal Society and Wellcome Trust

    Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk

    Get PDF
    The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project-imputed genotype data in up to similar to 370,000 women, we identify 389 independent signals (P <5 x 10(-8)) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain similar to 7.4% of the population variance in age at menarche, corresponding to similar to 25% of the estimated heritability. We implicate similar to 250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility
    corecore